## 1974a

The following 21 pp. paper by H. Aspden was published in 1974 by Sabberton
Publications, P.O. Box 35 Southampton SO16 7RB, England.

### THE CHAIN STRUCTURE OF THE NUCLEUS

**Abstract**: The atomic nucleus is shown to have a form determined by the
quantum structure of a Dirac-style vacuum. Nucleons occupy a series of holes in
the structured vacuum forming a shell about a core region of unoccupied holes.
These nucleons are linked by chains of electron-positron composition. The
lattice spacing can be related to the binding energy of the nucleus in precise
quantitative terms. The special position of Fe 56 in the nuclear packing
fraction curve is explained in terms of the cubic symmetry of the lattice
system, the optimization of interaction energy with the core charge and the
energy minimization of the chains.

**Commentary**: This paper developed the nuclear theme introduced in
chapter 7 of the author's 1969 book *'Physics without Einstein'*. The
author had explored the foundations of proton creation theory in that work and
had found a role for the pion in serving as a nuclear binding agent within the
nuclear structure. However, much stronger evidence had emerged to suggest that a
dimuon mass quantum was needed to replace the pion in the earlier model. This
gave basis for the statement:

"A very important advance emerges if we take the equation (7.9)
[from *'Physics without Einstein'*] and find the solution which gives
maximum surplus energy. Thus we put the expression at a minimum with M set at
1836m and M_{o} variable. Simple analysis then shows that for this
condition M_{o} is M(3/2)^{1/2)}M or 0.225M or
413m."

Noting that a muon pair has a combined mass of 413m, this was
the starting point for a major breakthrough in understanding proton creation
from a muon lepton field background. See the Physics Today reference [1984f].

The full text of this paper has now been included in these web
pages. See THE
CHAIN STRUCTURE OF THE ATOMIC NUCLEUS.