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Quantum Mechanics

Universal Time

In Chapter 3 the concept of time dilation as required by Einstein’s
theory was questioned. The experimental evidence supporting time
dilation was challenged and this means that there is really no clear
case favouring the idea that we age at different rates according to our
relative state of motion. Alternative explanations for the apparent
time changes are available and are consistent with the old-fashioned
idea that time is universal and is shared by all in a harmonious
manner. Indeed, one could say that we all sense the same time because
we are part of a universal clock woven into the properties of space.

In 1932 Dirac delivered his Nobel prize lecture under the title ‘The
Theory of Electrons and Positrons’ and made the statement:

It is found that an electron which seems to us to be moving slowly,
must actually have a very high frequency oscillatory motion of
small amplitude superimposed onthe regular motion which appears
to us. As a result of this oscillatory motion, the velocity of the
electron at any time equals the velocity of light. This is a prediction
which cannot be directly verified by experiment, since the frequency
is so high and its amplitude so small.

Similar proposals had been made earlier by both Einstein and
Schroedinger. Einstein imagined the electron as belonging to a
Galilean reference frame oscillating at a frequency determined from
the electron rest mass energy and the Planck relationship, and being
everywhere synchronous.

Thus, on the authority of great physicists such as Dirac, Schroe-
dinger and Einstein, we are led, when examining the microcosmic
world within the atom, to feel that matter is locked into a rhythmic
motion. The quantum world of the atom is a world in which time
appears to be universal.
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Matter is linked by space or the so-called fields which permeate
space. If time is universal then it becomes a property of space itself,
owing to this role of space in providing the universal connection.
Therefore, time must be connected with something which moves in
space, because time without motion is meaningless. But space is
devoid of matter if we consider the vacuum state. Yet there is motion
in such space. The aether is then essential to provide the medium
having this time-setting motion. We can avoid it by specifying
formulae which reflect its properties, that is, we can avoid using the
word ‘aether’. This was the course followed in developing wave
mechanics. Formulae, and notably the Schroedinger equation, were
developed and correlated with experimental facts. The underlying
physical system was not taken as a necessary foundation. It could not
be firm enough, bearing in mind the failure to detect the physical
aether as the absolute electromagnetic reference frame. But equations
need some kind of foundation if they are to portray reality, and the
aether, as a universal clock, can provide such foundation.

It needs little imagination then to realize that Dirac’s words quoted
above plus the ideas of Einstein lead to a model of the aether which
carries matter universally in synchronous circular orbital oscillations
in balance with something in space in synchronous countermotion
at the relative speed of light, the frequency being mec2/h. Here me
is electron mass, c is the speed of light and 4 is Planck’s constant.

Furthermore, from what has been said, space devoid of matter
must also have such a state of motion. We need then to distinguish
between the various elements moving in space. In Chapter 3 we spoke
of the C-frame as the universal reference frame for electromagnetic
action when matter was not present. Thus the C-frame becomes a
primary candidate for the cyclic oscillation. The counterbalance is
provided by something we will term the G-frame, which moves every-
where in the same cyclic direction as the C-frame but which, being
in juxtaposition about a common inertial frame, is always moving
at a fixed speed relative to the C-frame. This system is portrayed
in Fig. 22.

The line grid represents the G-frame and the solid dots represent
elements of the C-frame. These latter elements will later be identified
as the g charges or lattice particles introduced in Chapter 2. The
G-frame will be identified as the charge continuum o, also introduced
in Chapter 2 but will also comprise the gravitons introduced at the
end of Chapter 2. Note then that a relative velocity of light applies
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for relative motion of the g charges and o, giving u in (54) as c. Also
note that at any moment all the elements of the undisturbed vacuum
medium move parallel or anti-parallel.
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Fig. 22

When we come to consider the presence of matter, sharing the
motion of the C-frame, then we will see justification for having a
dynamic balance between the mass-energy of the gravitons and that
of the matter plus the g charge system. The inertial mass of matter
present thus becomes connected with the additional graviton mass,
in exactly the manner required to explain the electrodynamic disturb-
ance giving rise to gravitational effects. The equivalence of inertial
mass and gravitational mass is inherent to such a model. Also, the
mutually parallel motion of the gravitons and the continuum
satisfies the requirement of the law of electrodynamics for direct
mutual attraction along the line joining two :lectrodynamic disturb-
ances. This gives the key connection with a grevitational law of force.
It depends upon the interaction being insensitive to the high
frequency of the oscillations. This is assured in the theory presented
because the Neumann potential is proportional to (v.v") and if v and
v’ are always parallel and equal then their product is a constant
scalar quantity having no time dependence. The energy distribution
throughout space as represented by the Neumann potential is then
independent of the space oscillation frequency, provided the ampli-
tudes of v and v’ are constant. Thus the same forces are to be expected
whether the frequency is very high or as small as we choose to make
it. The gravitational potential must therefore be unaffected by the
frequency and apply as if there is true instantaneous action at a
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distance. There is energy deployment when two gravitational disturb-
ances, that is two particles of matter, move relative to the C-frame.
Then we do have retardation effects as if gravitation is subject to a
finite speed of propagation, but the key point is that the rapid cyclic
motion portrayed in Fig. 22 has no retarding effect upon gravitational
action. Nor, indeed, does it affect the electrical actions between the
charges because the spatial energy deployment of the direct electric
interaction fields remains constant relative to the C-frame. The
circular motion of the g charges nevertheless is subject to the self-field
action which gives the charges a mass property. However, it is a
different mass property from that we associate with isolated charge
in motion. The g charges are all constrained in the system depicted in
Fig. 22 to stay in synchronism. This constraint comes from their
electric interactions. It gives rise to extraneous fields which resist any
distortion of this synchronous state. Radial distortions and lateral
distortions can occur but not this frequency distortion. Therefore the
q charges have only two degrees of freedom. This affects the mass
property by causing any addition to the self-energy which we would
normally associate with the kinetic energy of the charge to be dis-
persed throughout the g charge lattice. It is shared to the extent that
any additional mass is distributed throughout the whole lattice. As a
result there can be no relativistic increase in mass of a g charge. Its
mass is effectively constant. Now this is very important, firstly
because it facilitates analysis, but secondly because it assures that the
system behaves as a linear oscillator and this is a key requirement to
our understanding of wave mechanics. We can therefore use Newton-
ian mechanics to calculate the behaviour of the space medium, in
spite of the fact that the relative velocity of the C-frame and G-frame
is the speed of light.

Planck’s Law

In Chapter 2 it was shown that the g charges when displaced in the
continuum of charge density o were subject to restoring forces
proportional to the displacement. This can be set in balance with the
centrifugal forces of the g charges, allowing us to write:

4dnoqx =mSlr (86)

from (37). Here r is the radius of the orbits of the g charges and
is the angular frequency of space. m is the mass of the g charges.
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x denotes the separation distance between the ¢ continuum and the q
charge system. Thus (x - r) is the orbital radius of the cyclic motion
of the graviton and ¢ continuum system. The ¢ continuum and the
gravitons are best regarded as an integral system statistically smeared
into a uniform whole as far as interaction with the ¢ system is
concerned. Thus, since the gravitons are deemed to be relatively
massive, they need only have a sparse population compared with the
lattice particles having the ¢ charge. Let m’ denote the mass of the
continuum-graviton system per lattice particle. Then:

mSQr=m'Q%(x -r) 87

The kinetic energy density of these C and G frame constituents of
space is proportional to:

mré+m'(x - r)? (88)

because the space frequency is constant. We may then expect the
electric potential energy of such a system to have minimized, so
determining x, and the rest mass energy of m and m’ to have been
deployed between m and m’ to maximize (88), inasmuch as kinetic
energy is drawn from a source of potential energy and, with energy

conservation, minimization of the latter means maximization of the
former.

Write M as m+m' to obtain from (87):
x—r=(m/M)x and r=(m'[M)x (89)
Put these in (88) to obtain:
(mM?2 - Mm?)x2[M? (90)

Since M and x are constant, we may now differentiate this energy

expression with respect to m to find its maximum by equating the
differential to zero. This gives:

1-2m/M =0 1)

from which we deduce that m =m’ and, from (89), that x =2r.

The C-frame and the G-frame describe orbits of equal radius r. As
their relative velocity is ¢, they move at a speed 4c in orbit. As the
space frequency is mec?/h, the value of 2 is given by:

Q =2amec?h (92)
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The radius r is then known, because Qr is }c. Thus:
r=hf4nmec 93)

At this stage it is interesting to show the link with a basic principle
of wave mechanics, Heisenberg’s Principle of Uncertainty. An elec-
tron located in the C-frame is never at rest in the inertial frame. Its
position is uncertain by an amount 2r and its momentum is uncertain
owing to the constant reversal of its motion at speed ic. The
uncertainty of momentum is twice its instantaneous momentum
$mec. Thus the product of uncertainty of momentum and uncertainty
of position is 2mecr, which, according to the Heisenberg Principle, is
h{2n. This is confirmed by (93).

Eddington* wrote in 1929 about the Heisenberg uncertainty
principle and said:

A particle may have position or it may have velocity but it cannot
in any exact sense have both.

In the sense of our analysis, a particle at rest in the electromagnetic
reference frame of free space does have velocity in the inertial frame.
In an exact sense it has velocity and position, but we must not think
it is at rest when it is always moving, nor do we ever need to say
exactly where it is in its motion about the inertial frame, because all
matter shares the same motion and is relatively at rest in this respect.

Our analysis so far does tell us that an electron has an intrinsic
motion when at rest in the electromagnetic reference frame. Its own
angular momentum is mecr/2 but there is a connected angular
momentum due to the balance afforded by the G-frame. Thus the
total angular momentum intrinsic to the electron and due to the
motion of the space medium is mecr, which, from (93) is #/4x. This
is the well-known value associated with electron spin.

The universal motion at the angular velocity Q defines a fixed
direction in space. A direction anisotropy in the properties of space
is not in evidence in experiments so far, though the space medium is
interacting with high energy particles and upsetting the parities which
apply theoretically. When we come to study the rotation of the space
medium with the Earth, it will then be seen that the earth’s magnetic
moment indicates that the axes appropriate to £ are approximately
normal to the plane in which the planets move about the sun. It is

* A. S. Eddington, The Nature of the Physical World, Cambridge University
Press, p. 220, 1929.
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probable from this that the space motion at the angular velocity £2,
though the same throughout all space in magnitude, may be directed
in different directions in the environment of different and widely
spaced stellar bodies. There may be space domains measured in
dimensions of many light years and within which £ is unidirectional.
Its direction may change from one domain to the next, affecting
gravitational interaction between bodies located in separate domains.
These are cosmological questions to be addressed in Chapter 8.
Suffice it to say here that the direction of 2 is of no significance to the
analysis in this and the next chapter. Space behaves as an isotropic
medium in its quantum mechanical interactions with the atom.

An electromagnetic wave is a propagated disturbance of the lattice
structure formed by the ¢ charges. The lattice can be disturbed if a
discrete non-spherical unit of it rotates and so sets up a radial pulsa-
tion. This is depicted in Fig. 23. A cubic unit is shown rotating about

Fig. 23

a central axis. Any axis through the centre of the cubic unit can be
chosen. The direction does not have to be parallel either with the
direction of the £ motion or a recognized direction of the lattice.
The rotation will disturb the lattice at a frequency proportional to
the speed of rotation of the unit. The three-dimensional symmetry
assures that the unit has the same moment of inertia about any axis
through its centre. The axis can be inclined to the lattice forming
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the unit. Therefore, the propagated disturbance frequency v will be
directly related to the angular momentum of the unit and inde-
pendent of the angular momentum vector. Our object is to show that
this has meaning in relation to Planck’s radiation law:

E=hv (94)

and the rotating cubic lattice will henceforth be termed the photon
unit. Before showing how (94) is supported by this theoretical
enquiry, a proof will be given for the above-asserted inertial
properties.

The photon unit is considered as an array of lattice particles locked
in fixed relative positions. Take co-ordinates referenced on the centre
of the unit. Imagine a particle with co-ordinates x, ¥, z distant p from
the origin. Take spin about the x axis. The moment of the particle
about this axis is 32 + z2. This is p2 — x2, Now take spin about an axis
inclined at an angle @ with the x axis. The moment about this new
axis is p%in20, or p2-p2cos?d. Let I, m, n denote the direction
cosines of this new axis of spin, relative to the X, ¥, z axes. Then the
moment about the new axis found from the direction cosine formula
for cosf is:

P:—(Ix+my +nz)? (95)

If now we apply this to a group of particles having three-dimensional
symmetry, there is a particle with co-ordinate — x for every one with
co-ordinate +x. Similarly for y and z. Thus cross-multiples of x, y
and z cancel. The expression (95) then becomes a summation:

2P2~ (12 x2 + m2y y? + n2Y 72) (96)

Cubic symmetry means that it does not matter if x, y and z are inter-
changed. Consequently their summations must be equal. Then, since
the sum of the squares of direction cosines is unity, we find the
expression in (96) becomes the summation of p2 — x2 for all particles
in the group. This is independent of the direction of spin.

A little consideration will show that if the photon unit depicted in
Fig. 23 rotates at an angular speed Q/4 it will develop an electro-
magnetic pulsation at the frequency of the universal motion of the
space medium. Under these conditions there is no electromagnetic
wave propagation since a little local adjustment of the surrounding
lattice can contain the disturbance. A photon unit rotating at the
angular speed £2/4 will be termed a standard photon unit. It is a
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quantum of angular momentum which is characteristic of the space
medium.

Now when an energy quantum F is added to the dynamic state of
the space medium it will, as with any linear oscillator, be shared
equally between the potential energy and the kinetic energy. With the
constant angular frequency €2, this means that }E is added to the
kinetic energy. That is:

$E=31HQ )

where H is the corresponding quantum of angular momentum. Thus,
even though the energy E may become dispersed throughout the
medium, it carries with it a related angular momentum given by:

H=EIQ (98)

The space medium is known to react critically to certain energy
quanta related to the mass of the electron or positron at rest. It
somehow permits the creation of electrons and positrons at these
exact energy levels, as if there is some kind of resonance at the
characteristic frequency of the space medium. It seems essential to
connect this phenomenon with the standard photon unit, especially
so in view of the clear connection evident from (92). The standard
photon unit must be associated with this energy quantum mec2.
Thus, from (98), H is mec2/Q, which, from (92), is:

H=h{2zn 99)
The moment of inertia I of the photon unit is given by:
H=IQ[4) (100)
which, from (99), gives:
I=2h{nQ2 (101)

Taking now a photon unit rotating at a much lower angular speed
w, this is related to the frequency v radiated by:

4w =2nv (102)

The angular momentum of this unit is Jew, which (101) and (102)
show to be:

Iw=hv/Q2 (103)
Then, from (98), since Iw is H:
E=hy (104)

which is Planck’s radiation law.
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Note that the kinetic energy of the photon units caused by their
rotation has been ignored. This is because the lattice particles form-
ing such units are still locked into their synchronous motion with the
lattice generally. Their masses are held constant and the energy which
would have constituted their kinetic energy due to the photon
rotation is dispersed.

Also note that the photon unit need not be a rigid structure when
rotating. When near positions in which it is in register with the
surrounding lattice it will have the same basic structure and this will
determine /. Jw will be constant throughout the rotation, but neither
I or w need stay constant at the intermediate positions.

The Schroedinger Equation

A photon unit rotates and so propagates disturbances at the
frequency given by (102). If an electron is constrained by such a
photon unit to describe orbits at this same frequency and can deploy
itself in the field as a whole between such orbital phases, it could,
collectively with other electrons, screen the photon radiation. Such
an electron would have a kinetic energy W given by:

W =(aH)}(2nv) (105)

where aH denotes the orbital angular momentum of the electron.
This orbital angular momentum is the minor orbital quantity
associated with the photon unit screening action. It is taken to be
equal and opposite to that of the photon unit, as part of this conser-
vative role. Putting a i equal to fw, we have from (103) and (105):

W =rhv?/Q2 (106)
From (92) this is:
W =31h*v2[mec? (107

The electron will need to deploy into successive positions through-
out the photon unit field in order to effectively screen the wave
radiation caused by the rotation of the photon unit. Let p be a
measure of the probability of finding the electron within a unit volume
at radius x from the centre of radiation. Then a spherical shell of
thickness dx at this radius x will, on average, contain 4nx2pdx of the
electron charge. The radiation field of an electromagnetic disturbance
diminishes in inverse linear proportion with x. Therefore, to screen
such a field the local motion of the screening electron has not only to
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conform with the frequency but has to be matched in magnitude by
the charge effect. This means that the expression:

1/x?) j}nxzpdx (108)

has to be inversely proportional to x. This is a requirement that p is
proportional to 1/x2, which means that it is proportional to A2,
where A is the wave amplitude at x.

The position of the electron in the photon unit field will then be
governed by a wave equation and 42 will give the probability of
finding the electron at any position in the wave field.

The standard wave equation of frequency v is:

44 +(4n%v%[c?)A =0 (109)
Eliminating v from (109) using (107) gives:
A4 +(8n2me/2YE - V)A=0 (110)

if W is written as E— V, denoting the difference between the total
energy E assigned to the electron and its potential energy V. This
difference is the kinetic energy W.

Equation (110) is the Schroedinger equation. This is the basic
equation of wave mechanics and much of the success of physical
theory which may be termed ‘non-classical’ has resulted from the
valid application of the equation. As is well known by students of
quantum theory, it is possible to develop the theory of the electron
structure of the atom by taking the Schroedinger equation as a
starting point. However, particularly in respect of the quantitative
priming of the energies of the discrete energy levels of the electrons,
the classical Bohr theory of the atom has to be used in conjunction
with wave mechanics for a complete understanding of the atom.

The weakness of the Bohr theory arose from the assumption that
the orbital electrons had angular momentum in units of the quantum
hf2n. It is, therefore, interesting to see that this quantum emerges as
the angular momentum of the standard photon unit in the above
theory. It is the natural angular momentum quantum arising from
electron or positron annihilation. It may then seem reasonable to
expect multiples of this angular momentum quantum to be character-
istic of possible motion states of the electron when freed from its
minor orbital motion with the slow photon unit. On such an assump-
tion the Bohr theory could apply to the electron as it is in transit
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between different field positions at which it halts to react with such a
photon unit.

In such a transit the kinetic energy of the electron will be as
determined by Bohr theory. The electric field interaction energy
applicable between the electron and the nucleus of the atom will
apply as in Bohr theory but throughout the transits and the photon
unit interactions. However, the kinetic energy as formulated from
Bohr theory and that given by (105) apply to different states of
motion. The energy must be the same throughout. This gives us a
connection between (105) and the normal parameters of the atom.

According to Bohr’s theory, an electron describing a circular orbit
around a nucleus of charge Ze moves so that its centrifugal force
mev?[R is in balance with the electrostatic force of attraction Ze?[Re,
Here R is the distance of the electron from the relatively massive
nucleus and v is the speed of the electron in orbit. By assuming that
the angular momentum of the electron is quantized in units of 4/2n it
is then possible to deduce that the kinetic energy of the electron is
given by:

W = tmp? = 2n2Z2%%me[n2h? (111)
where n is the number of units of the angular momentum quantum.

For the hydrogen atom with Z=1 and n=1, (111) becomes:

W =(2ne?{hc)2mec?/2 (112)

Let us now calculate the angular momentum of the electron in its
minor orbits when balancing a photon unit. This is aH from (105) or

Iw from (103). Eliminating v from these two expressions gives us the
angular momentum of:

(WhinQ)t (113)
From (92) this is:
(Wh2[2n2mec?)t (114)
From (112) this is:
(2ne?/hc)(hf2rn) (115)
Since this is «H and H is h/2r, from (99), we find that « is given by:
o =2ne?lhc (116)

This quantity is known as the fine structure constant. It is a very
important dimensionless constant. Its numerical derivation from a
rigorous analysis of the structured lattice of the space medium is
basic to the theory in this work. The discovery in the latter part of
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1955 that this quantity could be derived from the geometry of the
synchronous lattice system of Fig. 22 was the starting point for the
research into the derivation of a whole series of fundamental
constants, which are considered in the pages ahead. It will be shown
how « is derived in the next chapter. First, however, since the
calculation of the anomalous magnetic moment of the electron is
generally regarded as the major example of numerical verification of
theory and this depends closely upon «, it is appropriate to discuss
this in relation to the author’s methods.

The Electron g-factor

The theory of quantum electrodynamics by which the anomalous
angular momentum properties of the electron in spin has been
explained is a very complex theory, albeit one which has also proved
very successful. Its methods differ from the more direct approach
which will here be adopted. Our object is to show that a simple
approach may well be as good and possibly better. Research into
fundamental physics may not necessarily depend upon the use of
relativistic or quantum electrodynamic techniques based on abstract
concepts. There is considerable scope for simplifying quantum
electrodynamics, having an eye upon the synchronous lattice model
of the space medium shown in Fig. 22.

When an electron is in the confined state of motion we refer to as
‘spin’ it exhibits a magnetic moment which is not strictly e/mec times
its angular momentum. The discrepancy is termed the g-factor. The
ratio of magnetic moment to angular momentum is then g times
efmec. For the electron the experimental value of g is 1-00115965.
The measurement of g is really by comparison with e/mec as it applies
to an electron not in a state of spin. An electron in an atom may be in
a state of spin in contrast with an electron moving freely.

One cannot really be sure whether the anomaly arises because there
is something special about the spin motion or something special
about the motion of an electron in a less-confined orbit. Nor, indeed
can one be sure that it is the magnetic moment that is anomalous
rather than the mass in one of the electron’s two states,

To proceed, however, we will opt in favour of the mass property
being anomalous. Thus imagine the electron charge as a seat of radial
oscillations in its electric field. Suppose these oscillations occur at the
speed ¢ and at the natural frequency mec2/h of the space medium.
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There will be a radius from the electron at which a resonance can
occur as these oscillations traverse the resonant radius in both
directions in the period of one cycle of the natural frequency. The
resonant radius distance will then simply be half of the Compton
wavelength, or h/2mec. Beyond this radius, for a point charge
electron, the electric field energy is }e? divided by the radius, or:

OF =e2meclh (117)

This tells us that the electron has a mass energy JE beyond a radius
defining a resonance zone. From the E=Mc? formula this then
means that it has a mass component dm. outside this resonance zone,
where:

o =e?lhc (118)

It needs little imagination to look to this mass to justify the
anomaly. It is decoupled from the electron by virtue of the resonance
boundary, at least notionally. If the electron moves along a path
which is substantially linear compared with the scale set by the
Compton wavelength then the mass dme must move with the electron.
However, if the electron has a very restricted motion, confined well
within the Compton range, as it has in sharing the motion in the
space medium, an orbit of radius r given by (93), then one might
expect its mass to exclude dme. v

The consequence is that in the latter state, which we associate with
spin, the value of e/mec will be increased approximately by the
factor d. Note then that from (116) and (118) d is «/27m, and, as « is
known to be 0-:007297, this gives g as 1-00116. This seems to be a
promising approach, having regard to the experimental value of g
mentioned above.

Of course, it is a little difficult to imagine that the energy in the
electron field can package itself into two separate segments in this
way, but it may be that the mathematics tell us rather more than the
physical picture on which the analysis is based. Some statistical
processes are undoubtedly at work and give better basis for the
mathematics than does the steady state model of the electron field.

One problem we need to address is the finite size of the electron on
the basis of the J. J. Thomson formula. A point charge would have
infinite energy on classical foundations. Yet, in the quantum world of
space, it is difficult to be sure of any of our basic physical ideas. Some
writers have speculated about the nature of space as a world of the
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sub-quantum, invoking the idea that neutrinos travel in all directions
at high speed. We need not indulge in such speculation, except in
suggesting that the sub-quantum world may in some respects be like
a gas, setting the propagation speed for electric disturbances at the
value ¢ and providing the medium which asserts the resonant cavity
properties we have just introduced.

In this it helps to think of corpuscles bombarding the electron and
bouncing back to be reflected again by the cavity surface at the
resonant radius. If these corpuscles are themselves electrical in
character their path is likely to be ordered along radii from the
electron rather than random, at least in the near vicinity of the elec-
tron. Beyond a critical radius from the charge surface their ordering
will be random as in any gas. There is thus a probable transition
between the random region with its three degrees of freedom and a
region in the near vicinity of charge with one degree of freedom. This
transition radius will correspond to an area three times larger than
the area of the surface of the electron charge, in order that the
pressure on the charge surface should equal one third that in the gas
outside this transition radius.

The transition radius is therefore 3% that of the electron charge
radius a. The resonance occurs beyond this radius 3a, so that we add

half the Compton wavelength to the transition radius to obtain the
radius of the resonant cavity as:

h2mec +3%a (119)

This gives us a small correction term to allow for the finite size of

the electron. The value of g is determined from the J. J. Thomson
formula:

mec? =2¢%[3a (120)

From (116) and (120), (119) becomes:
(1 +2a/3tm)h[2mec (121)
The value of J is then seen to be reduced by this factor (1 + 2a/34x) to
become: 6= (a/2m)/(1 +2a/34r) (122)

The g-factor for the spinning electron then becomes 1/(1-4) or
1+6+02+63. ... From (122) this is:

g=1+(@20) +(3 -3 Ha/nR +G -3 +P(e/x)P.... (123)
or g=1+(x/2n) - 0-32735(xt/7)2 + 0-21 (a7} . . . . (124)
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This compares with the quantum electrodynamic derivation of
Sommerfield :*

g=1+(a/2m) - 0-328(a/n)2 . . . . (125)

The formulae differ by a few parts in 10°. Hence we see that there is
scope for matching the results of quantum electrodynamics by con-
sidering electrons as charges of spherical form and complying with
J. J. Thomson’s classical formula.

Later, when we consider the creation of the muon, we will also
address the muon g-factor and show that similar resuits are obtained.

Meanwhile, however, and before leaving the problem of the
electron g-factor, it is appropriate to anticipate a result we will come
to in Chapter 9. It will be suggested that a particle of mass m will,
even in what we regard as its rest state, store a dynamic energy equal
to gm, where ¢ is the local gravitational potential, due principally to
the masses of the Earth and Sun. This energy, as a kind of kinetic
energy, may be stored by the transient creation of electron-positron
pairs, in which case the energy will be part of the system beyond the
resonant radius of the cavity. Thus pm will be energy of mass pm/c?
adding to the linear mass of the electron but not the spin mass. Thus g
is increased by g/c2.

At the Earth’s surface p/c? is 1-06 108, which adds 0-84(a/n)3 to
the g-factor of (124). Upon evaluation, using a recent evaluationt of
a1 of 137-035963(15), (124) becomes, with this modification:

£=1-001159657 (126)
This compares with the measured value} of:
g =1-0011596567(35) (127)

* C. M. Sommerfield, Physical Review, 107, 328 (1957).
t E. R. Williams and P. T. Olsen, Phys. Rev. Lert., 42, 1575 (1979).
1 E. R. Coben and B. N. Taylor, Jour. Phys. & Chem. Ref. Data, 2, 663 (1973).



