It was in 1959, some 38 years ago, that I sent the manuscript of my short 48
pp. book entitled *'The Theory of Gravitation'* to the printers. There on
page 23, as equation (21), was that formula 144π(r/d) giving the value of
hc/2πe^{2} and that followed the chapter on *'THE AETHER'* where
that (r/d) quantity was calculated by using the principles presented here as
Tutorial No. 7 in these Web pages.

To know r/d, the orbital radius of the quantized activity of the aether in terms of the unit cell dimension of that aether, was shown to be sufficient for a determination of Planck's constant h in terms of the unit charge e of the aether action that was in quantized motion at the speed c/2 relative to the inertial reference frame.

To know Planck's constant and understand how the aether sets up the relationship E=hf between energy quanta E and electromagnetic wave frequency f, as explained in that book, takes us a long way forward in our efforts to decipher the secrets of the universe.

I could not have guessed at the time that, over the years which followed,
there would be a major discovery in astronomical observation that could confirm
my derivation of the precise value of that dimensionless quantity
hc/2πe^{2}.

Here I refer to an observation by Tifft as reported in *THE TIMES*,
(U.K. newspaper), on October 14, 1996.

"The story began with the discovery in the 1970s by William Tifft, of the University of Arizona, that the speeds of the galaxies he studied were always multiples of 72 kilometres per second.""Red shifts should be able to take any value, but Dr. Tifft seemed to show they were 'quantized' - restricted to certain values."

"This appeared impossible, but more recent research by Bill Napier at Oxford and Bruce Guthrie of the Edinburgh Royal Observatory confirmed it. Explaining why is very tricky, unless you assume that red shifts don't really tell us anything about speed or distance and that would undermine the whole basis of cosmology."

Now I have already, in Tutorial No. 8, explained how my theory developed to
show that the aether has levels of energy density at which it becomes, as it
were, locked into a quantum state corresponding to an integer value of the cube
of (9/8) times (d/r)^{2}. One can say that for each such integer step,
which corresponds to the number of electrons and positrons that can be created
as a group upon the annihilation of an aether particle and occupation of the
aether space thereby vacated, there is the possibility of such a quantum state.
It all depends upon the energy activity in the aether domain under consideration
and there are many such different domain regions in the whole expanse of the
universe.

What is so fascinating about this theory is the way in which it affords, for
our local domain sector of the universe, the precise values of that quantity
hc/2πe^{2} as found by measurement, namely 137.0359, and the
proton-electron mass ratio of 1836.152, the latter being a little below that
integer value of 1843 that prevails in our domain sector.

What promises to be equally fascinating is the scope for extending the theory to examine what happens in regions of outer space that are primed with far more energy activity than we see locally. If the r/d factor increases then that 1843 factor reduces and the proton mass will increase in terms of electron mass, but that then raises an interesting question. It is whether or not the 1843 factor in relation to the 1836 factor is fortuitous or whether it has real physical significance. My proton theory was developed by building the proton from muons rather than electrons, so my guess at this stage is that the similarity of these numbers is fortuitous, but this subject warrants some onward research.

Now, I am going to let you, the reader, take such research forward if that is
your wish. For my part I am now going to document the text of something I have
written and offered for publication on this topic and do no more, at least,
until I have got much further ahead with my experimental endeavours on New
Energy research. You see, I cannot compete with astronomers in interpreting
astronomical observations. I can only point the way forward, where my theory
offers an avenue of exploration. I may, however, be able to apply my electrical
engineering skills to show that there is some technological potential for
tapping aether energy and that keeps my sights locked on our immediate space
locality where r/d has the value corresponding to that 1843 integer. In this
quest I am not looking into outer space, but looking instead at the activity
occurring within a ferromagnetic core. The aether interacts with that magnetic
core by determining r as h/4πm_{e}c, whereas he/4πm_{e}c, with
electron charge e here written in electromagnetic c.g.s units, is the unit we
term the Bohr magneton. The aether also mediates in sustaining an energetic
activity in flux switching in the magnetic domains of the ferromagnet conforming
with quanta related to that Bohr magneton. See my paper reference [1978c]
in the Bibliographic section of these Web pages.

As I say, I must now get back to my research interests in that field, but I will leave this 1843 topic and the Tifft's findings by noting that my specific interest here is restricted to one single question. Why, in the light of Tifft's findings, is the value of that integer not 1844, which is a lower energy state? Remember that at 1845 the energy state would become negative and that is impossible!

I do not know the answer to that question, but it may be connected with the need for the aether locally to store the energy that relates to the gravitational potential of stars in our local galaxy.

I will say no more here on this subject other than documenting below the copy
of the paper I mailed to *Physics Letters* and the Editor's responses. I
will let these Web pages do their work in disseminating that information.

This Tutorial No. 10 completes my plans for presenting this 'Educational Course'. I have sought to show students and others how easy it is to solve the key outstanding problems of physics, completing a task of deciphering the fundamental dimensionless physical constants as inspired by Sir Arthur Eddington. Now I shall get on with my experimental work in the New Energy field, the subject addressed in my earlier Energy Science Reports.

*What now follows is the text of a manuscript I sent to Physics Letters A
in October, 1996. Its receipt was acknowledged by Editor, Professor P.R. Holland
on October 31, 1996.*

The theoretical derivation of the dimensionless fine-structure constant α,
giving α^{-1} as 108π(2)^{1/2}/N^{1/6}, where N is 1843,
reported in Physics Letters 41A, 423 [1972],
is shown to be confirmed by the 72.5 km/s steps observed by Tifft in the red
shifts of closely-positioned galaxies. Spectral lines are shifted in proportion
to (N^{1/3})(N^{1/3})^{1/3} or N^{4/9} and, with
N decreasing in integer steps, 4c/9N is between 72.4 km/s and 72.6 km/s over a
range from N=1841 to N=1828.

Recent media interest [1] has drawn attention to the discovery by Tifft [2] that the differences of recession speeds of galaxies in the pairs or small groups he studied were always a multiple of 72.5 km/s and the fact that this was later confirmed by independent observers.

Although it has been suggested that this is attributable to a cyclic variation in the constant of gravity G, which affects the cosmological red shift by introducing ripples in the rate of expansion of the universe, Tifft expressly noted that he could find no evidence of gravitational interaction between those galaxies. The following alternative explanation therefore warrants attention.

The combined spectral emission from the numerous stars in a galaxy will have
its basic frequency components determined by the usual Rydberg formula. The
derivation of this formula involves the fine structure constant alpha (here
denoted A) and the frequency f of any spectral component at its source can be
expressed as proportional to A^{2} and the Compton electron frequency
f_{o}. Thus, as equation (1), we can say that f is proportional to:

Petley [3] has reviewed theories for deriving A and the most recent entry in his Table 5.3 on page 161 of his book is the formulation (equation 2):

However, since the equilibrium between energy quanta is assured by a population of virtual muon pairs and state transitions occur at domain boundaries, one need not rule out energy fluctuations creating even integer states, resulting in different values of N prevailing in some domain sectors of a galaxy. As can then be seen, if N can reduce in integer steps, this will decrease the value of f and there will be a red shift in steps deducible from that proportional relationship (1).

Now, it is not intended here to introduce any new principles of physics. It is merely sought, using the theory as it stands in [4], to assess the bearing which Tifft's observations might have on physical constants seen from the perspective of different galactic domains. The full formal derivation of equation (3) is of record in several earlier works by the author, the most recent being [5], and the author now feels justified in drawing the following facts to the reader's attention.

Firstly, rest-mass energy of the electron m_{e}c^{2} is equal
to hf_{o} and the derivation of equation (3) shows that these also are
linearly proportional to e^{2}/d, where d is the lattice dimension of
the cubic structure of the vacuum model used to derive the equation. All three
of these energy terms are deemed to be universal constants in an intergalactic
sense. Secondly, the model requires a universal uniformity of the vacuum lattice
energy density, because energy has to be conserved in a spatial context, but the
zero-point energy of each unit cell of volume d^{3} can still exceed the
minimum value, corresponding to the decrease of N. The uniformity of the
zero-point energy density is the dominant universal factor. Then, though this is
not a mechanical fluid model subject to normal dynamics, one is led, from a
physical dimensional analysis, to conceive the need for a constant speed
parameter affecting perturbations or distortions of the lattice structure.
Thirdly, therefore, since f_{o} and d are the only physical parameters
we can combine with a numerical quantity to define a speed parameter, we must be
prepared to accept that f_{o}d is also a universal constant.

Note that, although the four terms m_{e}c^{2},
hf_{o}, e^{2}/d and f_{o}d are all universal constants,
if the value of N can differ in different galactic domains, this will change
f_{o}, d, h and e individually. However, here in this paper, we are only
interested in how f_{o} changes in (1).

To proceed, given that the mass-energy density of the structure forming the
vacuum medium is uniform, we know that m_{o}c^{2}/d^{3}
is constant, where m_{e}^{3} is N times
(2m_{o})^{3}, because, as seen from [4] this is the fundamental
basis on which the vacuum model was established, m_{o} being the virtual
mass of the lattice charge forming the vacuum structure. Therefore, we can
write, as equation (4):

Remembering that the least energy condition for odd integer N sets
N_{min} at 1843, but admitting even integer values at higher energy
states, balanced by fewer cells, we tabulate below the red shift factors
applicable for increased cell energy in a space domain involving lower values of
N.

N (N/N_{min})^{4/9}km/s ~ 1843 1.0000000 0 0 1842 0.9997588 72.3 72.3 1841 0.9995176 144.6 72.3 1840 0.9992762 217.0 72.4 1839 0.9990348 289.4 72.4 1838 0.9987933 361.8 72.4

The speed in km/s is calculated by determining the factor change in the second column and multiplying by the speed of light, thereby expressing the shift in the equivalent Doppler form corresponding to a recession velocity.

As can be verified, the 72.5 km/s steps reported from astronomical observation are in precise accordance with the theory under discussion, it being found that a further 10 steps take the increment through 72.5 km/s to 72.6 km/s. The author regards this as confirming his theory by which the fine-structure constant was first derived at the part per million level of precision [4]. The theory in its non-integer N form dates from early work published in the 1960-69 period.

The conclusion one reaches from this remarkable result is that galaxies can,
so far as the different space domain origins of their primary radiation sources
are concerned, lock into slightly different sets of fundamental physical
constants, and this, particularly with regard to f_{o}, has interesting
implications in confining the range of action of gravity forces to interaction
between matter within the same galactic domain. The author recognized the need
to accept the existence of such 'space domains' even within our local galactic
system in Chapter 16 of his 1972 book [6] but see also Chapter 8 in the 1980
work [7]. Such domains have bearing on geological events such as geomagnetic
field reversals occurring as the solar system transits through boundaries
separating adjacent space domains.

References

[1] N. Hawkes, 'Scientists hit Galactic G-spot', The Times, London, October
14, 1996, p. 18.

[2] W. G. Tifft, 'Discrete States of Redshift and Galaxy
Dynamics II. Systems of Galaxies', The Astronomical Journal, 211, 31-46 (1977).

[3] B. W. Petley, 'The Fundamental Physical Constants and the Frontier of
Measurement', Adam Hilger, Bristol, p. 161 (1985).

[4] H. Aspden & D. M.
Eagles, 'Aether Theory and the Fine Structure Constant', Physics Letters, 41A,
423-424 (1972).

[5] H. Aspden, 'The Theory of the Proton Constants',
Hadronic Journal, 11, 169-176 (1988).

[6] H. Aspden, 'Modern Aether
Science', Sabberton, PO Box 35, Southampton, England (1972).

[7] H. Aspden,
'Physics Unified', Sabberton, PO Box 35, Southampton, England (1980).

It was some six weeks or so before I received the Editor's response to my paper submission. Professor Holland simply declared that "on the basis of the referee's report your paper is not suitable for publication in Physics Letters A."

Now, I want you to take note that my paper made explicit reference and, indeed, relied upon my original theoretical discovery as reported in quoted reference [4], which was deemed worthy of publication by Physics Letters A some 24 years previously. In this new paper I was saying that here, at last, was proof in support of the theory of that earlier contribution. I was referring to something topical, a recent confirmation of a major new discovery in astrophysical observation that had defied explanation for 20 years but yet had now been confirmed by others. Yet this was the anonymous referee opinion that Editor Professor Holland saw fit to pass on to me with his letter of rejection:-

I am afraid that I believe this paper to be of no scientific value. It is based on a collection of unfounded numerological relations of Aspden's. It is unfortunate that he seeks to use them to explain some peculiar astronomical claims regarding quantization of velocities and red shifts by variations in physical constants. The author seems unaware of the entire literature concerning observational constraints on varying constants. In this respect I would draw attention to the very strong astronomical limits that come from quasar spectra on possible variations of constants between us and the location of the quasar in space and time. See for example Varshalovich et al, Astronomy Letters 22, 6 and Space Science Reviews 74, 259 and Cowie and Songalla, 'Astrophysical limits on the Evolution of Physical Constants over Cosmological Time', Ap. J. Nov 10th (1995). Other limits include T. Damour and F. Dyson, The Klo Bound and the Time Variation of the Fine Structure Constant, Nucl. Phys. B 1996. These investigations place upper limits on the time variation that are at least ten thousand times slower than the Hubble expansion rate. I recommend that this paper be rejected on the grounds that its methods are unfounded and it fails to account for the existing literature.

I have had many rejections of my papers over the years and, though unfair rejections are the norm, I can remember only one previous occasion where I decided to challenge the Editor's decision. That previous case warrants a Lecture of its own in these Web pages and it will be added soon. As to this subject situation I protested and requested Professor Holland to ask another referee to take a look at my paper.

Changes in N cause changes in alpha, the fine structure constant. That in turn would cause changes in the spacing of spectral lines. This is never observed in spectra of galaxies or even very high red shift quasars.The integer changes in N which yield the 72.4 km/sec red shift periodicity, however, are very interesting. (And I think the observed accuracy of that number is +/- 0.1) but there is no way I, or anyone else, I believe, can tell what N is from what is written in this paper or the referenced Phys. Lett. A paper. If it is meaningful I believe it is possible to explain it simply. Does N have any connection with the proton/electron mass ratio of 1836?

Because of the above mentioned restriction on changing alpha I would investigate whether something like the magnetic moment of the electron in the atom (connected with alpha) were projected at different quantized states. I was also interested in the suggestion that f

_{o}d was a universal constant.But there are a number of papers now appearing on this subject which the author should read, ponder and reference in an attempt to clear up, instead of deepening, the confusion. One of these is Astron. Astrophys., 315, L9, 1996. In that paper, regardless whether Nottale gets it almost right about the planets, he makes the same mistake that most people make with regard to the galaxy red shift quantization. Those favoured galaxy red shifts cannot represent velocities because differently projected peculiar or orbital velocities would wipe out the quantization!

Another paper Aspden should read and discuss is the Tifft paper in Ap. J. 468, 491, 1996. Tifft believes that time is three dimensional and that periodicities are given by ninth roots of the speed of light. I have not met anyone who understands this theory but I note that Aspden also has periodicities coming out of ninth roots. I don't believe anyone will pay any attention to a paper unless they (a) understand physically what the mechanism is and (b) how it is related to the observations. I urge Aspden to read the new material (including Apeiron, vol. 2, No. 2, p. 43, April 95) and not try to publish until he can bring some measure of clarification to the problem.

The first paragraph of the referee's letter is puzzling. Is it just a statement that there is no dispersion evident in red shift observation? That has no relevance to my paper, because all the lines in the frequency spectrum of a radiating atom are shifted in the same proportion if the fine structure constant changes. That is implicit in expression (1) in my paper. The question of dispersion is important in interpreting the physical processes which account for the cosmological red shift but that is something my theory has dealt with elsewhere. See reference [1984a] in these Web pages.

The penultimate paragraph is a criticism of a paper published by someone else. It may be useful to open a paper by criticism of work of others, to show that one is familiar with the literature, but that reference poses no obstacle to what is suggested in my paper. The km/s measure is notional and is just a convenient way of expressing a red shift value. If the fine structure constant changes, red shift changes without any doppler factor coming into play.

Concerning the remainder of the referee's opinion it expresses interest in what I say and aims to be encouraging but the end result is that you, the world at large, will not now see my paper to Physics Letters amongst the many millions of scientific papers that adorn university library shelves. The fact that the Tifft findings confirm the method of derivation of the fine structure constant of my aether theory is therefore something that you can learn about only from these Web pages.

As to the formula I derived from my theory I cannot expect anyone to understand what that integer N means unless there is a willingness to study the basics of my theory as explained in my books and now in these Tutorial Notes. Hopefully, if you have followed this course of tutorials to this point you will by now understand how the formula involving N is derived and will know that it is a step function involving energy thresholds governing particle creation processes prevailing in the aether.

In conclusion I am tempted to say again that there is little point in scientists wasting time and government money trying to probe the secrets of 'Big Bang' creation, 'Black Holes' and the presumed expansion of the universe, when they still do not understand the true nature of gravitation and the photon as seated in aether activity. They look at spectral images without regard to how energy creating those images is deployed as between aether and matter. For my part the Tifft observations tell me that jitter radius r of the aether deserves our attention because it determines the store of energy that we can visit when we go shopping for that commodity.

As and when I progress on that technological excursion I will aim to report
my findings in these Web pages. This concludes the last of these ten Tutorials.

Footnote added in August 1997: There has been a development on the subject of this Tutorial No. 10 as you will see if you follow this link to: